
CertiCoq-Wasm: A Verified WebAssembly Backend for
CertiCoq

Wolfgang Meier

womeier@posteo.de
Aarhus University

Aarhus, Denmark

Martin Jensen

mkarup@post.au.dk
Aarhus University

Aarhus, Denmark

Jean Pichon-Pharabod

jean.pichon@cs.au.dk
Aarhus University

Aarhus, Denmark

Bas Spitters

spitters@cs.au.dk
Aarhus University

Aarhus, Denmark

Abstract
We contribute CertiCoq-Wasm, a verifiedWebAssembly back-

end for CertiCoq. CertiCoq-Wasm is implemented and ver-

ified in the Coq proof assistant, and is mechanised with

respect to the WasmCert-Coq formalisation of the Web-

Assembly standard. CertiCoq-Wasm works from CertiCoq’s

minimal lambda calculus in administrative normal form

(ANF), and produces WebAssembly programs with reason-

able performance. It implements Coq’s primitive integer op-

erations as efficient WebAssembly instructions, identifying a

corner case in their implementation that led to unsoundness.

We compare CertiCoq-Wasm against other, partially verified

extraction mechanisms from Coq to WebAssembly, bench-

marking running time and program size. We demonstrate

the practical usability of CertiCoq-Wasm with two case stud-

ies: we extract and run a Gallina program on the web, and a

ConCert smart contract on the Concordium blockchain.

CCS Concepts: • Software and its engineering → Com-
pilers; Formal software verification.

Keywords: Compilers, Formal verification, Coq,WebAssembly

ACM Reference Format:
Wolfgang Meier, Martin Jensen, Jean Pichon-Pharabod, and Bas

Spitters. 2025. CertiCoq-Wasm: A Verified WebAssembly Backend

for CertiCoq. In Proceedings of the 14th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’25), January 20–
21, 2025, Denver, CO, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3703595.3705879

An early version of this work was presented at CoqPL’24 [29].

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

CPP ’25, January 20–21, 2025, Denver, CO, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1347-7/25/01

https://doi.org/10.1145/3703595.3705879

1 Introduction
Interactive theorem provers like Coq [46], Isabelle [33],

Lean [14], Minlog [7], and NuPRL [13] make it possible to

develop a program and prove its properties in the same en-

vironment. In many cases, the program is also of interest

outside of the theorem prover. For that reason, these the-

orem provers make it possible to extract such an internal

program to an external program, often written in another,

more mainstream language. While this is useful, it raises

the question of how the extracted program relates to the in-

ternal program, especially if extraction involves non-trivial

compilation. Coq has, almost since its inception, provided

extraction to OCaml by exploiting the closeness between the

source and target languages [36–38]. Despite the similarity

between the languages, verifying this extraction has been

a long-standing challenge [19, 20, 26, 27], and has only re-

cently been satisfactorily met [18]. To widen the applicability

of extraction by targeting a more mainstream language, a

more recent project, CertiCoq [1], implements an extraction

to C; it produces machine code when combined with the

verified CompCert compiler [25]. While C underpins much

of our computing infrastructure, WebAssembly [21, 39] (ab-

breviated Wasm) has emerged as the standard language to

deploy client-side apps on the web. WebAssembly is also

increasingly used on the server-side, for example in edge

computing and on the Internet of Things. Moreover, its strict

execution model also makes it suitable to run smart contracts

on the blockchain [12]. With the promise of near-native per-

formance [30], this makes WebAssembly an attractive target

for compilation. Together with a clearly defined semantics,

this makes it an attractive target for verified compilation.

Contribution. We thus contribute CertiCoq-Wasm, a ver-

ified WebAssembly backend for CertiCoq. CertiCoq-Wasm

works as an alternative to the original Clight backend of Cer-

tiCoq, producing insteadWebAssembly from CertiCoq’s 𝜆ANF
intermediate language [35, §3.1], as illustrated in Figure 1.

This greatly decreases the trusted code base over, for example,

unverified compilation of Clight to WebAssembly. We prove

CertiCoq-Wasm correct with respect to the specification of

https://orcid.org/0009-0005-3633-2490
https://orcid.org/0009-0003-5027-9249
https://orcid.org/0000-0002-4442-6543
https://orcid.org/0000-0002-2802-0973
https://doi.org/10.1145/3703595.3705879
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3703595.3705879

CPP ’25, January 20–21, 2025, Denver, CO, USA Wolfgang Meier, Martin Jensen, Jean Pichon-Pharabod, and Bas Spitters

Gallina

reified Gallina

𝜆ANF

Clight

asm

WebAssembly

MetaCoq

CertiCoq core

This paper

CompCert

Figure 1. The CertiCoq pipeline. MetaCoq [42], which has

to be trusted, is in dotted orange. Our verified contribution

is in blue. The CertiCoq core stage includes optimisations on

𝜆ANF.

WebAssembly 2.0 with the tail call extension [40], as mecha-

nised inWasmCert-Coq [49]. For portability, CertiCoq-Wasm

can be made to generateWasm binaries that only use the sub-

set of Wasm defined in the WebAssembly 1.0 standard [39].

For performance comparison, we also develop an (unver-

ified) extension of CertiCoq-Wasm which uses the (work-

in-progress) garbage collection extension of WebAssembly.

For performance, CertiCoq-Wasm supports translating Coq’s

63-bit ‘primitive’ integers and the operations on these to effi-

cientWasm instructions, making it Coq’s first verified extrac-

tion mechanism to support them. During the verification of

the primitive integer operations, we identified a corner case

which led to an unsoundness in Coq’s vm_compute1, and to

bugs in CertiCoq’s (not yet verified) implementation of prim-

itive operations, as well as an incorrect modelling of shifts

in WasmCert
2
. We compare CertiCoq-Wasm against other

extraction mechanisms from Coq to WebAssembly, bench-

marking running time and program size. We demonstrate

the practical usability of CertiCoq-Wasm with two case stud-

ies: we extract and run a Gallina program on the web, and a

ConCert smart contract on the Concordium blockchain.

1.1 CertiCoq
CertiCoq is a compiler from Gallina, the programming lan-

guage of the Coq proof assistant [15], to Clight [8], the di-

alect of the C programming language that CompCert [25]

compiles. It works as an alternative to the usual extraction

mechanism from Gallina to OCaml, Haskell, or Scheme. Sev-

eral stages of CertiCoq are verified, including the frontend,

optimisations, and there is an ongoing effort to verify the C

backend. However, CertiCoq does not yet have an end-to-end

correctness statement [24, §13].

As often in compilation of a functional language to an im-

perative one, CertiCoq’s pipeline involves a low intermediate

1https://github.com/coq/coq/issues/19402
2https://github.com/WasmCert/WasmCert-Coq/issues/44

(Variable) 𝑥,𝑦, 𝑓 ∈ Var
(Constructor) 𝐶 ∈ Constr
(Primitive val) p ∈ PrimVal
(Primitive op) op ∈ PrimOp
(Function def) fd ::= (𝑓 (𝑦) = 𝑒)

(Expression) 𝑒 ::= let 𝑥 = 𝐶 (𝑦) in 𝑒

| let 𝑥 = 𝑦.𝑖 in 𝑒

| case 𝑦 of [𝐶𝑖 → 𝑒𝑖]𝑖∈𝐼
| let 𝑥 = 𝑓 𝑦 in 𝑒

| 𝑓 𝑦

| let 𝑥 = 𝑝 in 𝑒

| let 𝑥 = op 𝑦 in 𝑒

| let fd in 𝑒

| halt 𝑦

(Value) 𝑣 ::= (𝐶, 𝑣) |
(
𝜌, fd, 𝑓

)
| 𝑝

(Environment) 𝜌 ::= · | 𝜌 ;𝑥 ↦→ 𝑣

Figure 2. Syntax of CertiCoq’s 𝜆ANF intermediate language.

language, 𝜆ANF, which is where CertiCoq-Wasm inserts itself.

𝜆ANF is an untyped lambda-calculus in A-normal form [34,

§3]. In addition to common constructs, it features ‘primitive’

63-bit integer values and corresponding operations, mirror-

ing those available in Coq [46, §2.1.13]. We give the syntax

of 𝜆ANF in Figure 2, and its operational semantics in Figure 3.

We require that 𝜆ANF expressions satisfy the following

restrictions:

1. Both locally bound variables and function variables

are internally represented by globally unique integers,
and a mapping provides meaningful names.

2. Function definitions are only allowed at the top-level.

3. The number of constructors, function definitions, etc.,

are representable as Wasm i32s.
The first two restrictions are ensured by an earlier pipeline

stage. CertiCoq-Wasm checks the third restriction, and re-

fuses to compile a 𝜆ANF expression if it is not satisfied. Similar

restrictions have to hold for the original C backend.

1.2 WebAssembly
CertiCoq-Wasm ismechanisedwith respect to theWasmCert-

Coq formalisation of the WebAssembly standard. Wasm is a

simple but detailed stack language, whose syntax we sketch

in Figure 4. Each WebAssembly module can be equipped

with a linear memory, a growable array of bytes, accessed

with load and store instructions that take integer indices

as addresses (as opposed to the complex pointers of C). We

use this memory to lay the tree of constructors out. We also

take advantage of the indirect functional call instruction,

call_indirect, which takes as argument a function index into

a table of functions. One unusual feature of WebAssembly is

https://github.com/coq/coq/issues/19402
https://github.com/WasmCert/WasmCert-Coq/issues/44

CertiCoq-Wasm: A Verified WebAssembly Backend for CertiCoq CPP ’25, January 20–21, 2025, Denver, CO, USA

𝜌 (𝑦) = 𝑤 𝜌 ;𝑥 ↦→ (𝐶,𝑤) ⊢ 𝑒 ⇓𝑘 𝑣

𝜌 ⊢ let 𝑥 = 𝐶 (𝑦) in 𝑒 ⇓𝑘 𝑣
(e_constr)

𝜌 (𝑦) = (𝐶,𝑤) 𝜌 ;𝑥 ↦→ 𝑤𝑖 ⊢ 𝑒 ⇓𝑘 𝑣

𝜌 ⊢ let 𝑥 = 𝑦.𝑖 in 𝑒 ⇓𝑘 𝑣
(e_proj)

𝜌 (𝑦) = (𝐶,𝑤) (𝐶 ⇒ 𝑒) ∈ 𝑏 𝜌 ⊢ 𝑒 ⇓𝑘 𝑣

𝜌 ⊢ case 𝑦 of 𝑏 ⇓𝑘 𝑣
(e_case)

𝜌 (𝑓) = (𝜌 ′, fd, 𝑓)
(𝑓 (𝑥) = 𝑒) ∈ fd names(fd) = {𝑓1, . . . , 𝑓𝑛}

𝜌 ′; 𝑓𝑖 ↦→ (𝜌 ′, fd, 𝑓𝑖);𝑥 ↦→ 𝜌 (𝑦) ⊢ 𝑒 ⇓𝑘 𝑣

𝜌 ⊢ 𝑓 𝑦 ⇓𝑘+1 𝑣
(e_tailcall)

𝜌 (𝑓) = (𝜌 ′, fd, 𝑓)
(𝑓 (𝑥) = 𝑒) ∈ fd names(fd) = {𝑓1, . . . , 𝑓𝑛}

𝜌 ′; 𝑓𝑖 ↦→ (𝜌 ′, fd, 𝑓𝑖);𝑥 ↦→ 𝜌 (𝑦) ⊢ 𝑒 ⇓𝑘 𝑤
𝜌 ;𝑥 ↦→ 𝑤 ⊢ 𝑒 ⇓𝑘 𝑣

𝜌 ⊢ let 𝑥 = 𝑓 𝑦 in 𝑒 ⇓𝑘+1 𝑣
(e_call)

𝜌 (𝑦) = 𝑣

𝜌 ⊢ halt 𝑦 ⇓𝑘 𝑣
(e_halt)

𝜌 ;𝑥 ↦→ 𝑝 ⊢ 𝑒 ⇓𝑘 𝑣

𝜌 ⊢ let 𝑥 = 𝑝 in 𝑒 ⇓𝑘 𝑣
(e_primval)

𝜌 (𝑦) = v op 𝑣 = 𝑤 𝜌 ;𝑥 ↦→ 𝑤 ⊢ 𝑒 ⇓𝑘 𝑣

𝜌 ⊢ let 𝑥 = op 𝑦 in 𝑒 ⇓𝑘 𝑣
(e_primop)

𝜌 ; 𝑓1 ↦→ (𝜌, fd, 𝑓1); . . . ; 𝑓𝑛 ↦→ (𝜌, fd, 𝑓𝑛) ⊢ 𝑒 ⇓𝑘 𝑣

names(fd) = {𝑓1, . . . , 𝑓𝑛}
𝜌 ⊢ let fd in 𝑒 ⇓𝑘 𝑣

(e_fundef)

names(fd) := {𝑓 | (𝑓 (𝑥) = 𝑒) ∈ fd}

Figure 3. Big-step operational semantics of 𝜆ANF. See [41,

Figure 3.1] and [34, §3].

that it only features structured control flow with if-then-else

and loops, but no goto. This means that compilation from

languages with non-structured control requires a ‘reloop-

ing’ stage [51]. However, this does not pose problems when

generating code from 𝜆ANF.

CertiCoq-Wasm is mechanised with respect to the Wasm-

Cert formalisation of WebAssembly 2.0 with the tail call

extension [40]. In verifying the integer primitives, we identi-

fied a corner case in the shift operation of WasmCert, which

was treating the shift like a C shift, which assumes there

is a bound on how much shifting is allowed, whereas in

WebAssembly, there is no bound, and the amount of shift

is instead treated modulo. The generated binary only uses

features from WebAssembly 1.0 and tail call instructions; for

compatibility, CertiCoq-Wasm can also be made to generate

strict WebAssembly 1.0 binaries.

(Value Type) 𝑡 ::= i32 | i64 | . . .
(Instruction) instr ::= 𝑡 .const | 𝑡 .add | . . . | 𝑡 .xor | . . . |

𝑡 .load memarg | 𝑡 .store memarg |
memory.grow |
nop | if bty instrs1 else instrs2 end |
call funcidx |
call_indirect tableidx funcidx

(Module) m ::=

funcs : list func,
mem : option mem,

start : option funcidx,
tables : list table
. . .

Figure 4. Syntax of WebAssembly (excerpts). The type of

modules is simplified for presentation purposes.

2 CertiCoq-Wasm
2.1 Code Generation
CertiCoq-Wasm generates a Wasm module with a main func-
tion that can be invoked from a Wasm runtime host, like

Chrome’s V8 and Firefox’s SpiderMonkey in the browser, or

Node.js and Wasmtime on the server side. CertiCoq-Wasm

proper takes a 𝜆ANF expression and generates aWebAssembly

module. When combined with the earlier CertiCoq pipeline,

as in Figure 1, it takes a Gallina expression.

Functions & Globals. The generated module has a main
function, whose body is the compiled main 𝜆ANF expression.

When called, it writes its result to the result variable, or

sets the global out_of_mem to 1.

The translated 𝜆ANF functions follow the main function:

they have the type i32𝑛 → [], where 𝑛 is the arity of the

original 𝜆ANF function. Just like the main function, these func-

tions return their result via the global result.
Moreover, functionsmaintain a common ‘highwatermark’

of memory consumption in the global mem_ptr, abbreviated
as gmp, which we explain in Section 2.1.1.

Table. The module contains a table that is initialised with

an identity mapping to support indirect function calls. Web-

Assembly 1.0 does not have native reference types or point-

ers, so a function’s i32 index identifies a function. An indirect
call instruction then takes the index and calls the function

specified in the table.

Linear Memory. The generated Wasm module contains a

linear memory, in which we store boxed constructor values

and primitive values. It is grown dynamically as required

using the memory.grow operation, up to a maximum size of

1920 MB.

CPP ’25, January 20–21, 2025, Denver, CO, USA Wolfgang Meier, Martin Jensen, Jean Pichon-Pharabod, and Bas Spitters

2.1.1 Memory Management. Binaries generated by

CertiCoq-Wasm use naive memory management, without

garbage collection. Once allocated, values remain in the lin-

ear memory until the end of the execution. To ensure that

values are never overwritten, the module maintains a global

gmp ‘high water mark’ which always points to the next free

space in the linear memory. Whenever a new segment of a

certain size is allocated, the gmp is increased by that size; it

is never decreased.

Before every allocation, a check is performed whether

the linear memory is large enough or has to be grown dy-

namically. CertiCoq-Wasm keeps track of available memory

statically and only inserts dynamic checks when necessary. If

a dynamic check fails to provide enough memory, execution

terminates with the global out_of_mem set to 1.

Prototype with Garbage Collection. There are several
ways to refine this approach with garbage collection. One

can, like CertiCoq’s C backend [41, §4.1.6][48], adjust CertiCoq-

Wasm to generate bindings to a GC written and verified in

the target language.

Alternatively, one can rely on the target language: in

our case, make use of Wasm’s recent WasmGC proposal,

which extends WebAssembly with heap-allocated memory

for which the runtime performs garbage collection. This pro-

posal is standardised and available in most (but not yet all)

important Wasm runtimes
3
.

We follow the second approach, as we presume that a GC

implemented in Wasm would likely be slower, since it would

have to maintain a shadow-stack, as Wasm programs can’t

access the call stack to scan for live roots.

We thus develop a prototype
4
of CertiCoq-Wasm targeting

WasmGC, which we include in the performance evaluation

but don’t describe further here. The prototype is not veri-

fied, since WasmCert does not (yet) support the WasmGC
proposal, but we expect it would be straightforward to adapt

our correctness proof.

This GC proposal might not be appropriate for all applica-

tions, for example in the blockchain context where execution

is typically required to be deterministic. However, for such

applications, 2 GB of linear memory is typically enough and

not a limitation in practice.

2.1.2 Representing 𝜆ANF Values inWasm. The code gen-
eration function of CertiCoq-Wasm translates a 𝜆ANF expres-

sion to a list of Wasm instructions with the same behaviour.

However, since 𝜆ANF andWasm have different execution mod-

els and different representations — 𝜆ANF works with ADTs,

while Wasm works with bytes — we need to bridge that gap.

We capture what it means for a Wasm program to evaluate

to the same value as a 𝜆ANF expression with the value relation
of Figure 5, which relates a 𝜆ANF value to a Wasm i32 value.

3https://webassembly.org/features/
4https://github.com/womeier/certicoqwasm/tree/wasmgc

(vr_fun)

(𝑓 (𝑦) = 𝑒) = fdidx−1
sr.funcsidx = 𝐹 𝐹 .type = (i32 |𝑦 | → [])

𝐹 .body = codegen 𝑒 𝐹 .locals = i32 |bound_vars(𝑒) |(
𝜌, fd, 𝑓

)
≃val

sr idx

(vr_constr_boxed)

𝑣 ≠ nil ∃𝑛, 𝑝𝑡𝑟 = 2 · 𝑛
sr.mems0 =𝑚 ptr + 4(|𝑣 | + 1) ≤ sr.globalsgmp

𝑚[ptr, ptr + 4] = 𝐶 ∀𝑣𝑖 ∈ 𝑣 . 𝑣𝑖 ≃val

sr 𝑚

[
ptr + 4(𝑖 + 1),
ptr + 4(𝑖 + 2)

]
(𝐶, 𝑣) ≃val

sr ptr

(vr_constr_unboxed)

𝑣 = nil

(𝐶, 𝑣) ≃val

sr (2 ·𝐶 + 1)

(vr_prim_val)

sr.mems0 =𝑚

ptr + 8 ≤ sr.globalsgmp 𝑚[ptr, ptr + 8] = 𝑝

𝑝 ≃val

sr 𝑝𝑡𝑟

Figure 5. Value relation. Relates a 𝜆ANF value to its repre-

sentation as a Wasm i32 value.

Function Value. A 𝜆ANF function value (𝜌, fd, 𝑓) is related
to the i32 idx identifying a Wasm function 𝐹 . 𝐹 takes argu-

ments of type i32 according to the arity of the 𝜆ANF function.

Recall that all functions return their result via the global

variable result.

Constructor Value. CertiCoq-Wasm’s representation of

a 𝜆ANF constructor value 𝐶 (𝑣) is based on the one used by

CertiCoq’s C backend [41, §4.1], which in turn is based on the

one used by the OCaml compiler. For efficiency, we represent

nullary constructor values as unboxed i32 values (using 31
bits), while non-nullary constructor values are boxed: they
are represented by an address starting from which linear

memory contains the code of the constructor, followed by

the arguments. The least significant bit of the i32 is used to

distinguish the two.

Primitive Value. We represent Coq’s 63-bit integers in

Wasm with an i32 pointing to an i64 in the linear memory.

For every integer primitive operation, the arguments are

loaded and the result stored. We could instead trade time

for space and use i64s to represent each 𝜆ANF value, which

would avoid this indirection, but doing that would double

memory usage for programs without primitives. We do not

implement float and array primitives.

https://webassembly.org/features/
https://github.com/womeier/certicoqwasm/tree/wasmgc
https://github.com/womeier/certicoqwasm/blob/cpp/theories/CodegenWasm/LambdaANF_to_Wasm_correct.v#L736

CertiCoq-Wasm: A Verified WebAssembly Backend for CertiCoq CPP ’25, January 20–21, 2025, Denver, CO, USA

2.1.3 Translation of 𝜆ANF Expressions. The function
translate_body compiles a 𝜆ANF expression to a list of Web-

Assembly instructions that simulate the behaviour of the

source expression. It is called on every 𝜆ANF expression: the

main expression, and the body of every function definition.

In the correctness proof, we use the — more convenient —

relational version of this function, which we call the codegen
relation. It depends on multiple mappings, in particular lenv,
which maps the let-bound 𝜆ANF variables to Wasm locals, and

fenv, which maps 𝜆ANF function variables to their function

index in Wasm. We omit these mappings in the following

when they are unambiguous.

2.2 Correctness
The correctness statement of CertiCoq-Wasm concerns com-

pilation from CertiCoq’s 𝜆ANF to WebAssembly. Once Certi-

Coq has an end-to-end correctness theorem linking its veri-

fied stages, we can combine our result with CertiCoq’s inter-

nal correctness to get a Gallina-to-Wasm result.

CertiCoq-Wasm’s correctness guarantee is given in The-

orem 2.1. It states that running the main function of the

generated Wasm module results in a store sr′, where the

result variable contains a value related to the correspond-

ing 𝜆ANF value (or the execution ran out of memory).

The proof goes by forward simulation over the operational

semantics of 𝜆ANF and Wasm. For every evaluation step of

a 𝜆ANF expression, the generated Wasm instructions simu-

late the original behaviour. After the execution of the main

function, the result variable is set correctly. The proof of
Theorem 2.1 is visualised in Section 2.2.1 and explained in

the following section.

Theorem 2.1 (Correctness of lowering). For any closed,
well-formed 𝜆ANF expression 𝑒 with globally unique bound vari-
ables, well-formed constructor environment, and well-formed
prim_funs environment (see §2.3), if compilation is successful,
the resultingWasmmodule instantiates and its ‘main’ function
evaluates to the same value as 𝑒 , or runs out of memory:

©«
𝑒 = let fd in 𝑒′ ∧
· ⊢ 𝑒 ⇓ 𝑣 ∧
compile 𝑒 = (mod, . . .)

ª®¬ =⇒

∃sr, sr′, fr .©«
instantiate mod (sr, fr) ∧
(sr, fr, [call idxmain]) ↩→∗ (sr′, fr, []) ∧(
𝑣 ≃val

sr′ sr
′.globals

result
∨ sr′.globals

out_of_mem
= 1

)ª®®¬
where ‘compile’ is our extraction to Wasm, which generates a
Wasm module mod. The module is then instantiated, inducing
a ‘store’ sr and a ‘frame’ fr . Calling the main function reduces
to the final ‘store’ sr′ holding the result.

let fd in 𝑒′

𝑒′

𝑣

empty

∀𝑖 . fi ↦→ (·, fd, 𝑓𝑖)

E_FUNDEF

evaluate

sr, fr′

sr′, fr′′

sr′, frsr′.result

evaluate
(Thm 2.2)

≃env
(Lem 2.1)

≃val
(Thm 2.2)

mod
compile to
Wasm

sr, fr

instantiate
(Lem 2.1)

enter
main

leave
main

INV (sr, fr)

Figure 6. Visualisation of the proof of Theorem 2.1.

Dashed arrows indicate multiple steps.

Proof. The proof is visualised in Figure 6 and explained in

the following sections. It follows from Theorem 2.2 (Gen-

eralised correctness of lowering) and Lemma 2.1 (Module

instantiation). □

This statement is complemented by the determinacy of

the fragment of WebAssembly that CertiCoq-Wasm targets,

which is also crucial for the use of WebAssembly on the

blockchain. We make use of the fact that non-determinism

may only occur locally
5
in WebAssembly 1.0. For example,

CertiCoq-Wasm generates binaries that abort the execution

when a memory allocation fails. Another common source

of non-determinism are floating point operations, which we

don’t use. (However, we may do so in the future to support

translating Coq’s primitive float operations.)

2.2.1 Correctness Proof Visualised. Figure 6 illustrates
the structure of the proof of Theorem 2.1.

𝜆ANF Evaluation (Left, Downwards). The top-level 𝜆ANF
expression (thick border, top left) defines a set of functions

fd. It is evaluated on an empty environment, resulting in a

final value 𝑣 . The first evaluation step (E_FUNDEF) extends

the environment with the function names 𝑓𝑖 from the fd.
Then, the continuation 𝑒 evaluates to the value 𝑣 under this

new environment.

5https://github.com/WebAssembly/design/blob/main/Nondeterminism.
md

https://github.com/womeier/certicoqwasm/blob/cpp/theories/CodegenWasm/LambdaANF_to_Wasm.v#L307
https://github.com/womeier/certicoqwasm/tree/cpp/theories/CodegenWasm/toplevel_theorem.v#L62
https://github.com/WebAssembly/design/blob/main/Nondeterminism.md
https://github.com/WebAssembly/design/blob/main/Nondeterminism.md

CPP ’25, January 20–21, 2025, Denver, CO, USA Wolfgang Meier, Martin Jensen, Jean Pichon-Pharabod, and Bas Spitters

Compilation and Instantiation (Horizontal). The 𝜆ANF
expression is compiled to a module mod using CertiCoq-

Wasm. This module is then instantiated, inducing the store

sr and the frame fr . After instantiation, the set of invariants
INV holds, and sr.funcs contains the translated functions.

The invariants INV are preserved until the final store sr′.

WebAssembly Evaluation (Right, Downwards). The
main function is entered; fr′ is its frame right after function

entry. The body is executed, inducing a store sr′, which has

the result variable set correctly. The reduction of the body

follows from the generalised correctness Theorem 2.2. To

apply it, one has to show its various assumptions, in par-

ticular (1) that the set of invariants INV holds, and (2) that

the environment relation holds. At this point, the environ-

ment relation only says that the functions fd are present in

store sr .

2.2.2 Environment Relation. Before stating the gener-
alised correctness theorem, we introduce what we call the

environment relation (the correctness statement of the C back-

end uses a similar relation [41, §4.3.1], which the author calls

the memory relation). It captures what it means for a 𝜆ANF
expression to correspond to a Wasm program by relating a

𝜆ANF environment to the Wasm environment representing

the same state, see Figure 7.

Functions. For function values obtained from 𝜌 , the en-

vironment relation provides the index of the corresponding

Wasm function.

The first conjunct in Figure 7 states that all function values

in 𝜌 refer to the top-level set of functions. This includes e.g.

when a function value is an argument of a constructor value,

which is captured by the reflexive-transitive closure of the

(structural) subvalue relation, denoted by ⊑. The 𝜌 ′ is empty

because function definitions are initially added (see rule

E_FUNDEF) to the empty environment, and there is no way

to obtain other function values.

The second conjunct in Figure 7 states that the top-level

functions fd are translated correctly, and are present in the

store.

Free Variables. For every free variable in 𝑒 , the environ-

ment relation provides a local variable holding an i32 value,
that is related to the corresponding 𝜆ANF value via the value

relation.

Recall that let-bound 𝜆ANF variables are mapped to locals in

Wasm. Whenever a variable 𝑥 is let-bound, the continuation

is evaluated in the original environment extended with 𝑥

(see e.g. rule E_PROJ in Figure 3). When executing the Wasm

instructions generated for the continuation, the values of the

free variables, including 𝑥 , must be available in the frame’s

locals. This is captured by the third conjunct in Figure 7.

2.2.3 Generalised Correctness. We can now state the

generalised correctness of lowering in Theorem 2.2.

𝜌 ≃env
fd,e (sr, fr) :=©«

∀𝑥, 𝑣, 𝜌 ′, fd′, 𝑓 .
𝜌 (𝑥) = 𝑣 ∧ (𝜌 ′, fd′, 𝑓) ⊑ 𝑣 =⇒
𝑓 ∈ names(fd) ∧ 𝜌 ′ = · ∧ fd = fd′

ª®®¬ ∧

©«
∀𝑓 .
𝑓 ∈ names(fd) =⇒
∃fi. repr_funvar 𝑓 fi ∧ (·, fd, 𝑓) ≃val

𝑠𝑟 fi

ª®®¬ ∧

©«
∀𝑥 .
𝑥 ∈ free_vars(𝑒) =⇒
∃𝑣, 𝑣 ′, 𝑙 . 𝜌 (𝑥) = 𝑣 ∧ 𝑣 ≃val

𝑠𝑟 𝑣 ′ ∧ fr.locals𝑙 = 𝑣 ′

ª®¬
Figure 7. Environment relation. Relates a 𝜆ANF environment

𝜌 to Wasm store sr and frame fr .

The theorem states that, given a 𝜆ANF expression 𝑒 that

evaluates to a value 𝑣 in a context 𝜌 , the Wasm instructions

𝑒′ which are generated for 𝑒 simulate the behaviour of 𝑒 .

Executing 𝑒′ ultimately results in a store sr′ which has the

result variable set to an i32 related to 𝑣 .

The statement requires the presence of a function frame

for the tail-call case. During a tail invocation, the frame is

replaced with the frame of the called function. Moreover, the

fact that all variables 𝑥 let-bound in 𝑒 are not yet set in 𝜌

stems from the fact that all 𝜆ANF variables are globally unique.

Thus, values in 𝜌 are not overwritten or ‘shadowed’. This

transfers to the generated module: locals are only set once.

Theorem 2.2 (Generalised correctness of lowering). For
any well-formed, size-restricted 𝜆ANF expression 𝑒 with globally
unique bound variables, a global set of function definitions fd,
a block context B𝑘 , and well-formed prim_funs environment,
constructor environment, local environment, and function en-
vironment, if

©«
𝜌 ⊢ 𝑒 ⇓ 𝑣 ∧ codegen 𝑒 = e′ ∧
INV (sr, fr) ∧ 𝜌 ≃env

fd,e (𝑠𝑟, 𝑓 𝑟) ∧
translated fd in sr.funcs
(∀𝑥 . 𝑥 let-bound in 𝑒 ⇒ 𝑥 ∉ 𝜌)

ª®®®¬
then we have

∃sr′, fr′, C𝑘 ′
.©«

(sr, . . . , frame0 {fr} B𝑘 [𝑒′] end) ↩→∗

(sr′, . . . , frame0 {fr′} C𝑘
′ [return] end) ∧(

(𝑣 ≃val

sr′ sr
′.globals

result
∧ INV (sr′, fr′′)) ∨

sr′.globals
out_of_mem

= 1

)
∧

(∀𝑣, 𝑣 ′ . 𝑣 ≃val

sr 𝑣 ′ ⇒ 𝑣 ≃val

sr′ 𝑣
′)

ª®®®®®®®¬
where ‘INV’ is the set of invariants described in Section 2.2.4,
and the various environments are omitted for readability. C𝑘

′

is a new (possibly deeper) block context.

Proof. The proof goes by induction over the big-step eval-

uation derivation 𝜌 ⊢ 𝑒 ⇓ 𝑣 , as per the rules in Figure 3.

https://github.com/womeier/certicoqwasm/blob/cpp/theories/CodegenWasm/LambdaANF_to_Wasm_correct.v#L956
https://github.com/womeier/certicoqwasm/tree/cpp/theories/CodegenWasm/LambdaANF_to_Wasm_correct.v#L3961

CertiCoq-Wasm: A Verified WebAssembly Backend for CertiCoq CPP ’25, January 20–21, 2025, Denver, CO, USA

It differs from the proof of the C backend [41, §4.3] due to

Wasm specifics and the different memory management.

Stepping through 𝑒′ may reach a continuation that is to

be executed from a store and a frame. To use the induction

hypothesis to step through the continuation, we need to

show the two main assumptions that (1) the invariants hold

and that (2) the environment relation holds:

(1) The generated Wasm instructions preserve the invariants

about mutability, bounds, etc. as required.

(2) If the expression let-binds a variable 𝑥 , then one has to

show that the environment relation holds on the original

environment 𝜌 extended with 𝑥 set to a value 𝑣 , assuming

that it holds on the original 𝜌 , fr and sr. This is done by

showing its three conjuncts.

(2.1) For the first one, one has to show that the value 𝑣 only

contains function values referring to the top-level definitions.

This is the case, since the environment relation is known to

hold on the original 𝜌 , and one can only obtain a function

value present in 𝜌 , since it is not possible to construct a

function value in any other way.

(2.2) For the second one, one has to show that the store’s

funcs contain the translated top-level function definitions

fd. This is the case because it holds for the previous store,
and the funcs of a store are not modified during execution.

(2.3) The third one is central to the proof. It enforces that,

after executing the instructions generated for the particular

expression, the Wasm local 𝑥 ′ holds a Wasm i32 related to 𝑣

via the value relation (where the local environment maps 𝑥

to 𝑥 ′). Further, the values provided by 𝜌 are still related to

the fr and sr. This is the case because the generated code is

in SSA form: locals previously assigned are not overwritten.

Similarly, values in the linear memory are not overwritten,

as per our memory management, see Section 2.1.1.

The intermediate i32 values are kept in the locals, and every

function body ends with a halt. The Wasm instructions

generated for this expression set the result variable correctly.

□

2.2.4 Invariants. A set of invariants INV is required to

hold on the Wasm store and frame throughout execution.

They capture the pre-conditions of Wasm’s reduction rules:

For example, that certain globals aremutable, or that pointers

to the linear memory are in-bound (and that loads and stores

therefore succeed).

2.2.5 Instantiation. In WebAssembly, a module is a static

object, which for example declares a memory, but does not

define its contents. A module is turned into its runtime rep-

resentation, a module instance during instantiation, which
results in a store (which contains the module instance) and

a frame. After instantiation, the invariants INV hold on the

store and frame, and the translated functions are present in

the store.

Lemma 2.1 (Module instantiates). For any 𝜆ANF expression
𝑒 with globally unique bound variables, and a well-formed
constructor environment,

compile 𝑒 = (mod, . . .) =⇒

∃sr, fr .
©«
instantiate mod (sr, fr) ∧
𝐼𝑁𝑉 sr fr ∧
translated fd in sr.funcs ∧
funcmain in sr.funcs ∧ . . .

ª®®®¬
Proof. One has to show that the module will successfully

instantiate, producing a store sr and a frame fr of the right
form:

(1) Going through instantiation requires in particular that

the generated Wasm module is well-typed.

(2) The set of invariants INV has to hold after instantiation.

This is true by construction of the module. For example, the

global mem_ptr is initialised with 0, and is thus in the bounds
of the linear memory.

(3) Further, ‘compile’ translates the fd correctly, so they are

present in the store after instantiation. □

2.3 Assumptions
CertiCoq does not yet have an end-to-end correctness state-

ment linking its separately verified stages together. Once

that is stated, the following assumptions are required to con-

nect Theorem 2.1 to the rest of CertiCoq, obtaining a Gallina

to Wasm result:

Constructor Environment. The constructor environment

maps every constructor tag to a record that contains its arity,

its constructor ordinal (an integer uniquely identifying this

constructor), and the inductive type it belongs to. The Wasm

backend expects this environment to be well-formed. In par-

ticular, the arity has to agree with the number of arguments

that constructor expressions in 𝑒 are actually applied to. Fur-

thermore, CertiCoq-Wasm expects that certain constructors

are given a specific constructor ordinal. For example, the

translation of the primitive operation eqb depends on the

fact that true and false are assigned 1 and 0, respectively.

All constructors (except booleans) are assigned ordinals ac-

cording to the order Coq’s type definition lists them in. The

bool constructors are swapped by an earlier stage of Certi-

Coq to achieve the same ordering as OCaml’s booleans. This

ordering is not checked by the Wasm backend, as there is no

clear way to check it.

Prim_funs Environment. The prim_funs environment

maps 𝜆ANF primitive operators to the corresponding Coq

primitive. We assume that this environment is well-formed

in the sense that it maps all (supported) primitive operators

toWebAssembly code implementing that operator. Currently,

this includes all operations on unsigned 63-bit integers, but

https://github.com/womeier/certicoqwasm/blob/cpp/theories/CodegenWasm/LambdaANF_to_Wasm_correct.v#L1080
https://github.com/womeier/certicoqwasm/tree/cpp/theories/CodegenWasm/LambdaANF_to_Wasm_instantiation.v#L2437

CPP ’25, January 20–21, 2025, Denver, CO, USA Wolfgang Meier, Martin Jensen, Jean Pichon-Pharabod, and Bas Spitters

not floats or arrays. Programs using non-supported primi-

tives are rejected, and so not supporting a primitive does not

compromise soundness, merely completeness of the com-

piler.

Size Restrictions. CertiCoq-Wasm requires the 𝜆ANF ex-

pression to be constrained in size, so that all relevant val-

ues fit in the range of Wasm’s i32s. These restrictions are
enforced: CertiCoq-Wasm refuses to compile expressions

containing an inductive data type with more than 2
31 − 1

nullary or non-nullary constructors. The original C backend

of CertiCoq makes similar restrictions [10, §5.2]. Given that

this limit stems from the constraints of the backend, it does

make sense to test and flag it at this stage.

Closed Expression. The 𝜆ANF expression is assumed not
to have free variables. This is guaranteed by CertiCoq’s pre-

vious pipeline, and not checked by the Wasm backend.

Unique Bound Variables. The variables of the 𝜆ANF ex-
pression are assumed to be globally unique. Again, this is

guaranteed by CertiCoq’s previous pipeline, and not checked

by the Wasm backend.

3 Evaluation
3.1 Benchmarks
We evaluate the performance of WebAssembly code pro-

duced by CertiCoq-Wasm for a set of Gallina programs. Ex-

traction mechanisms for Coq are commonly evaluated on

CertiCoq’s test suite [34, §8.2], from which we select the

benchmarks demo1, vs_easy, vs_hard, binom, color and

sha_fast. Additionally, we include the Ackermann function

due to its many recursive calls as ack_3_9, and the coqprime
benchmark due to its use of Coq’s primitive 63-bit integer

operations:

• demo1: appends two lists of booleans of length 500 and

300.

• vs_easy: compiles VeriStar [44] and checks the entail-

ment of a decidable fragment of separation logic

• vs_hard: same as above, but for a harder entailment.

• binom: constructs two binomials queues, merges them,

and finds the maximum [5].

• color: graph colouring based on a verified implemen-

tation [5] of the Kempe-Chaitin algorithm [11].

• sha_fast: computes the SHA-256 sum of a string of

length 484.

• ack_3_9: computes Ackermann’s function on the num-

bers 3 and 9.

• coqprime: verifies the primality certificate of a prime

with 100 digits.

3.2 Other Extraction Mechanisms to Wasm
We evaluate CertiCoq-Wasm compared to other extraction

mechanisms from Coq to Wasm. Since we are not aware

Gallina

𝜆ANF

C Rust OCaml Malfunction

WebAssembly

[1]

[41]

[51]

[2]

[50]

[26]

[47]

[18]

[47]

This paper

Figure 8. Overview of various tools for extracting Coq pro-

grams toWebAssembly. Solid arrows indicate verified, dotted

arrows unverified components. The dashed arrow for [2] in-

dicates that the pipeline is partly verified; the other dashed

arrow for [1] indicates that the verification is currently a

work in progress.

of other tools targeting WebAssembly directly, we combine

Coq’s various extraction mechanisms with other tools, as

follows (Figure 8):

Via C. The extraction from Coq to C via CertiCoq [1],

combined with Emscripten [51]. Emscripten is based on

LLVM, and is the standard tool for compiling C-like lan-

guages to Wasm; it compiles the C code generated by Cer-

tiCoq linked with a verified garbage collector [48] to Web-

Assembly. The current version (3.1.58) of Emscripten targets

WebAssembly 1.0 by default. It can generate tail call instruc-

tions, but this requires compiler directives in the C code,

which CertiCoq’s C backend doesn’t generate.

Via Rust. The extraction from Coq to Rust provided by

ConCert’s Coq-rust-extraction [2], combined with Wasm-

pack [50]. Coq-rust-extraction generates Rust code with a

memory model similar to the one of CertiCoq-Wasm. Wasm-

pack uses the Rust compiler to generate a Wasm binary,

and generates bindings around it for JavaScript applications

using e.g. Node.js. The generated binary is compatible with

WebAssembly 1.0 (and so does not support tail calls; we are

aware of work-in-progress to support them).

Via OCaml. The extraction from Coq to OCaml [26],

combined with Wasm_of_ocaml [47]. The generated binary

makes use of both the WebAssembly WasmGC and the Tail
call proposal.

Via Malfunction. The verified extraction from Coq to

Malfunction [18], combined with Wasm_of_ocaml [47]. Mal-

function [16] is a wrapper around the Lambda intermediate

representation of the OCaml compiler. The generated binary

makes use of both the WebAssembly WasmGC and the Tail
call proposal.

CertiCoq-Wasm: A Verified WebAssembly Backend for CertiCoq CPP ’25, January 20–21, 2025, Denver, CO, USA

demo1
vs_easy

vs_hard binom color sha_fast ack_3_9 coqprime

0

100

200

50

150

250

440

R
u
n
t
i
m
e
(
m
s
)

Via Rust -O2
Via C -O2
Via OCaml -O2
Via Malfunction -O2
CertiCoq-Wasm (Wasm 1.0+tc) -O2
CertiCoq-Wasm (Wasm 1.0+tc) -O0
CertiCoq-Wasm (WasmGC+tc) -O2

✗1 ✗1 ✗1 ✗2✗3 ✗2

✗1
indicates the extraction of ill-typed code, preventing compilation to Wasm, ✗2

that Coq’s primitive integers are not

supported, and ✗3
that the generated Wasm binary fails with a runtime error.

Figure 9. Run time (startup + main) of Wasm binaries from different extraction mechanisms. All binaries are run with Node.js.

CertiCoq-Wasm outperforms the ones via Rust and C for all benchmarks but one, and all benchmarks when optimised (-O2).
The one via OCaml is better than CertiCoq-Wasm except for coqprime; CertiCoq-Wasm is on par with the one via Malfunction.

CertiCoq-Wasm. CertiCoq-WasmgeneratesWebAssembly

directly in a verified way, assuming that the earlier stages of

CertiCoq are correct. By default, it generates binaries com-

patible with WebAssembly 1.0 with the tail call extension,

but can also produce strict WebAssembly 1.0 code if needed

— for example for blockchains such as Concordium. However,

we do not make this the default, as these binaries are slower

and the call-stack might overflow for larger programs.

3.3 Performance of Different Extraction
Mechanisms

In Figure 9, we compare the various extraction mechanisms

using the V8 Wasm runtime in Node.js 22.1.0.

We include CertiCoq-Wasm as is (-O0) and with optimi-

sations (-O2), and the unverified CertiCoq-Wasm prototype

targetingWasmGC. Optimisations are performed on the final

Wasm binaries by binaryen’s wasm-opt tool. All three ver-
sions make use of the Tail call proposal. The other extraction
tools are run with their respective -O2 optimisations, and

the generated Wasm binaries optimised with wasm-opt -O2.
We observe that CertiCoq-Wasm with optimisations out-

performs the extractions via Rust and C on all benchmarks,

on average by 42.2% (for the benchmarks which extract to

Rust) and 42.4%, respectively. Unoptimised CertiCoq-Wasm

outperforms the two extractions for all but the color bench-
mark. Both extractions are based on the LLVM infrastructure;

we estimate that if they were made to generate tail calls, the

gap in performance would be smaller.

The extraction via Malfunction is roughly on par with op-

timised CertiCoq-Wasm. CertiCoq-Wasm with optimisations

is 8% faster than the extraction via OCaml on average over

all benchmarks. However, when excluding the coqprime
benchmark with the primitive integer operations, OCaml is

36% faster than CertiCoq-Wasm.

The binaries obtained via OCaml and Malfunction both

make use ofWasmGC, and both outperform our CertiCoq-

Wasm prototype mode targeting WasmGC. However, the
performance of our prototype could most likely be improved.

Coq’s primitive integers are not yet supported by the ex-

tractions via Malfunction and Rust. For the coqprime bench-
mark, unoptimised CertiCoq-Wasm is 51% faster than the

unverified extraction via OCaml. We suspect that part of this

difference is due to OCaml using boxed 64-bit integers.

3.4 Optimisations with Binaryen’s Wasm-opt
Optimising CertiCoq-Wasm’s binaries with wasm-opt -O2
improves performance by 39% on average across the bench-

marks (21% when excluding color).
The color benchmark benefits the most, which is due

to wasm-opt’s coalescing of locals (Wasm’s local variables).

Since CertiCoq puts code in SSA form, many constants in the

original Gallina program lead to many locals in the generated

Wasm functions. For the color binary, which includes the

encoding of a sizeable graph, the generatedmain function has

over 20,000 locals. They are coalesced to around 150, making

up most of the 3x improvement achieved with wasm-opt
-O2 (Figure 9).

We currently only rely on wasm-opt to achieve reasonable
performance for such programs. A verified CSE optimisation

on CertiCoq’s middle-end and verified Wasm optimisations

such as local coalescing are left as future work.

CPP ’25, January 20–21, 2025, Denver, CO, USA Wolfgang Meier, Martin Jensen, Jean Pichon-Pharabod, and Bas Spitters

Table 1. Linear memory usage of Wasm binaries generated

by CertiCoq-Wasm, in KB. All binaries are optimised with

wasm-opt -O2.

d
e
m
o
1

v
s
_
e
a
s
y

v
s
_
h
a
r
d

b
i
n
o
m

c
o
l
o
r

s
h
a
_
f
a
s
t

a
c
k
_
3
_
9

c
o
q
p
r
i
m
e

22 6,128 38,141 248 16,515 25,642 44,673 35,546

Table 2. Binary size forWasm binaries generated by different

extraction mechanisms, in KB. All binaries are optimised

with wasm-opt -O2.

d
e
m
o
1

v
s
_
e
a
s
y

v
s
_
h
a
r
d

b
i
n
o
m

c
o
l
o
r

s
h
a
_
f
a
s
t

a
c
k
_
3
_
9

c
o
q
p
r
i
m
e

Rust 73 ✗ ✗ 300 173 364 21 ✗
C 67 439 441 260 1296 523 22 ✗
OCaml 13 36 37 40 ✗ 77 7 89

Malfunction 13 43 43 40 174 68 7 ✗

CC-Wasm 32 162 162 159 799 281 1 314

CC-WasmGC 7 88 87 36 176 78 1 216

3.5 Memory Usage
Wasm binaries generated by CertiCoq-Wasm store construc-

tor values and primitives in the linear memory. Allocated

memory is not freed due to CertiCoq-Wasm’s simplistic mem-

ory management. We thus measure and report in Table 1,

how much linear memory each benchmark uses when call-

ing the main function. We observe that typical programs,

including all of CertiCoq’s test suite, fit well within the limit

of around 2 GB. However, because this limit of 2 GB does

not include garbage collection, it is still a limitation for our

backend, as we discuss in Section 2.1.1. For example, the

coqprime benchmark uses a 100-digit prime, it would run

out of memory for a 150-digit prime.

3.6 Binary Size
Table 2 shows the size of the binaries generated by CertiCoq-

Wasm. CertiCoq-Wasm consistently generates smaller bina-

ries than the extraction via C or Rust (except for the color
benchmark).

The smallest binaries are generated by extraction mecha-

nisms targeting WasmGC. Binary size is particularly impor-

tant for blockchain applications, as one needs to pay for their

permanent storage. AsWasmGC is not generally available

on blockchains, CertiCoq-Wasm remains the best option for

blockchain applications.

3.7 Performance of Different Wasm Runtimes
We evaluate CertiCoq-Wasm with two popular Wasm run-

times, Node.js 22.1.0 and Wasmtime 21.0.1 in Figure 10. The

d
e
m
o
1

v
s
_
e
a
s
y

v
s
_
h
a
r
d

b
i
n
o
m

c
o
l
o
r

s
h
a
_
f
a
s
t

a
c
k
_
3
_
9

c
o
q
p
r
i
m
e

0

100

200

300

400

2

18

72

9

47 50

91
77

22

41

88

112

500

362

91

132

0
10

61

4

24

39

88

66

Node.js

Wasmtime

Wasmtime-compile

Figure 10. Run time of CertiCoq-Wasm-generated Wasm

binaries with different runtimes, in ms. The hatched part

is the startup time, the remaining the run time of the main

function. All binaries are optimised with wasm-opt -O2.

former uses Google’s V8 engine that also powers Chrome;

the latter is popular for non-browser Wasm applications
6
.

We show the startup time, which is the time to load the

Wasm binary, transfer it into the engine’s runtime represen-

tation, and instantiate it, in hatched. Node.js outperforms

Wasmtime significantly on all benchmarks except ack_3_9.
For the color benchmark, Node.js is 20x faster than Wasm-

time.

Startup time makes up the lion’s share of Wasmtime’s run

time, while it is negligible for Node.js. This is because Wasm-

time performs Ahead-Of-Time compilation: a Wasm binary

is first compiled to x86 that is then run. Node.js performs JIT

compilation consisting of two compilers: the fast and simple

Liftoff compiler produces runnable code in a single pass, and

hot functions are recompiled with Turbofan, a sophisticated
multi-pass compiler.

However, the recommended way of using Wasmtime in-

cludes pre-compiling to x86 (using Wasmtime), whenever

the Wasm binary is available statically. This is measured

as Wasmtime-compile. With pre-compilation, Wasmtime is

actually faster than Node.js.

3.8 Trusted Computing Base
Because CertiCoq-Wasm builds on the CertiCoq front-end

and middle-end, it inherits all of CertiCoq’s “upper” assump-

tions. This includes, in particular, MetaCoq’s verified era-

sure [43], CertiCoq’s ANF transformation (whose proof is

6
To allow evaluating otherWasm runtimes, theWasm binaries for our bench-

marks and our testing setup are available at https://github.com/womeier/
certicoqwasm-testing.

https://github.com/womeier/certicoqwasm-testing
https://github.com/womeier/certicoqwasm-testing

CertiCoq-Wasm: A Verified WebAssembly Backend for CertiCoq CPP ’25, January 20–21, 2025, Denver, CO, USA

currently work in progress), and CertiCoq’s various verified

optimisations on 𝜆ANF [35].

We verify CertiCoq-Wasm down to theWebAssembly AST

ofWasmCert. The conversion of the AST to the .wasm binary
format is part of WasmCert, but not yet verified.

CertiCoq-Wasm is almost fully implemented in Gallina;

the only exception is minimal OCaml code used to register

our backend in the CertiCoq plugin.

4 Applications
We demonstrate the practical usability of CertiCoq-Wasm

with two case studies, in two key use cases of WebAssembly:

on the web, and on the blockchain.

4.1 JavaScript Application
We show how one can integrate Wasm binaries generated by

CertiCoq-Wasm in a JavaScript application.We use CertiCoq-

Wasm to extract a Gallina implementation of the SHA-256

algorithm verified in Coq [4]. The generated Wasm binary is

integrated into a simple web interface, so one can compute

the SHA-256 sum of a custom string. The site is available at

https://womeier.de/certicoqwasm-demo.html.

4.2 Blockchain Application
In a second case study, we use CertiCoq-Wasm to extract a

ConCert [3] smart contract to a Wasm module, and deploy

it on the Concordium blockchain [12].

We select the counter contract from ConCert’s test suite,

and extract it using CertiCoq-Wasm using the strict 1.0 mode,

modified to insert all the function imports from the Con-

cordiumAPI. The binary is combinedwith (unverified)Wasm

glue code that bridges the gap between the extracted con-

tract and the Concordium API. Thanks to CertiCoq-Wasm’s

correctness, the generated smart contract can only go wrong

due to a mistake in the glue code. We deployed it on Con-

cordium’s testnet, and observed that it behaves as expected:

one can initialise the counter and increase its value.

The extraction is currently tailored towards the counter
contract and Concordium. It could be generalised to extract

other contracts to Concordium, or target other blockchains

based on WebAssembly. Currently, the Wasm glue code has

to be adapted to every contract; this could bemade automatic.

5 Related Work
To the best of our knowledge, CertiCoq-Wasm is the only ver-

ified compiler from Coq to WebAssembly (up to the caveats

of CertiCoq of §1.1) at the time of writing. However, there

are several extraction mechanisms that target more or less

mainstream languages:

Coq comeswith a built-in extraction-mechanism toOCaml,

Haskell, and Scheme [26]. Several projects, such as Certi-

Coq [1] and CompCert [25], depend on the OCaml extraction.

Even though it works well in practice, it is not verified. Multi-

ple bugs have been found, e.g. CertiCoq’s color benchmark

is extracted to ill-formed OCaml code.

The verified Malfunction extraction [18] improves upon

the current extraction to OCaml, and there are plans for

the former to replace the latter in the near future. It targets

Malfunction [16], a functional language that is very close to

one of the OCaml compiler’s intermediate representations.

The Malfunction code can be compiled to OCaml byte code

that is compatible with the one obtained using the unverified,

built-in extraction.

The CertiCoq [1] compiler allows extracting Coq to Clight,

a subset of the C programming language. Most stages of its

pipeline are proven correct, including its various optimisa-

tion passes. Combining it with CompCert allows extracting

Assembly in a verified way, but not WebAssembly, since

CompCert does not target Wasm at this time. By extend-

ing CompCert with such a backend one could also obtain

a Gallina-to-Wasm pipeline. However, the generated bina-

ries may suffer similar performance and size limitations to

the ones obtained via Emscripten. Further, when targeting

WasmGC, the generated Wasm binaries would be larger (and

likely less efficient) as they include CertiCoq’s garbage col-

lector.

Similar to CertiCoq, Œuf [31] compiles Gallina to C in a

verified way. It is aimed at compiling specific Coq applica-

tions and thus fairly limited in practice. As opposed to Certi-

Coq (and CertiCoq-Wasm), it cannot translate user-defined

inductive data types, pattern matching or recursion.

ConCert [3] is a framework for developing and verifying

smart contracts in Coq. To deploy such a smart contract on a

blockchain, it has to be extracted to the respective smart con-

tract language. ConCert includes extraction mechanisms [2]

to Rust and Elm [17] and also supports extracting to OCaml-

like languages, like Liquidity [9]. CertiCoq-Wasm can be

used to extract ConCert smart contracts directly to Wasm,

e.g. for the Concordium blockchain. Our extraction has a

smaller TCB compared to ConCert’s Concordium extraction,

which depends on the Rust compiler. However, as opposed

to ConCert’s Concordium extraction via Rust, one currently

has to adapt theWasm glue code for each contract; this could

be made automatic.

Pilsner [32] is a verified compiler from a subset of ML to an

assembly-like target language. Their main contribution is in

composability: multiple modules can be compiled separately,

and their results linked in a verified way. The main parts of

Pilsner’s correctness proof are parametrised over the source

and target languages, which allows linking modules obtained

even from different compilers. CertiCoq-Wasm is concerned

with whole program compilation. It would be possible to

extend CertiCoq-Wasm with a foreign function interface on

the Wasm level, making use of CertiCoq’s VeriFFI [24].

Further afield, Isabelle’s code generation, like the clas-

sic extraction of Coq, relies on the closeness of the source

https://womeier.de/certicoqwasm-demo.html

CPP ’25, January 20–21, 2025, Denver, CO, USA Wolfgang Meier, Martin Jensen, Jean Pichon-Pharabod, and Bas Spitters

and target languages: SML, OCaml, Haskell, and Scala. Code

generation for SML was verified [22, 23] with respect to

CakeML’s subset of SML [45], with which it can then be

combined to generate assembly (we are aware of a project

to make CakeML generate WebAssembly [28]). In addition,

Isabelle has been extended with a Go backend, which, like

CertiCoq, requires more extensive compilation [45]. To our

knowledge, Lean, Minlog, and Nuprl’s extraction mecha-

nisms are to date unverified.

Finally, jsCoq [6] is a port of Coq itself (of its OCaml code,

not of Gallina code) to JavaScript using is_of_ocaml. As a side

effect of our project, one could implement native_compute
in jsCoq to generate WebAssembly and run directly in the

browser, bypassing the layers of indirection that vm_compute
has to go through.

6 Proof Effort and Experience
Our main contribution is the artefact that allows compil-

ing Gallina to WebAssembly in a verified way. The earlier

CertiCoq-Wasm prototype [29] was the result of adapting

CertiCoq’s C backend in the canonical way to target Web-

Assembly. We subsequently addressed the limitations re-

ported for this prototype and substantially improved overall

performance. This required engineering work, but no new

proof-techniques.

The proof took about 21 person-months of work, and totals

to about 4 kLoC of specification, and 13 kLoC of proof (using

coqwc, without comments).

Acknowledgments
We thank Zoe Paraskevopoulou for suggesting the project

and providing advice. We are grateful to Eske Hoy Nielsen

and Andreas Stenbæk Larsen for advice regarding the smart

contract demo, and Xiaojia Rao regarding the WasmCert

mechanisation. Finally, we thank the anonymous reviewers

for their comments. This work is supported by an Aarhus

University DIGIT small collaboration grant.

References
[1] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe

Paraskevopoulou, Randy Pollack, Olivier Savary Belanger, Matthieu

Sozeau, and Matthew Weaver. 2017. CertiCoq: A verified compiler

for Coq. In The third international workshop on Coq for programming
languages (CoqPL).

[2] Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen, and Bas Spitters.

2022. Extracting functional programs from Coq, in Coq. Journal
of Functional Programming 32 (2022), e11. https://doi.org/10.1017/
S0956796822000077

[3] Danil Annenkov, Jakob BotschNielsen, and Bas Spitters. 2020. ConCert:

a smart contract certification framework in Coq. In Proceedings of the
9th ACM SIGPLAN International Conference on Certified Programs and
Proofs. 215–228. https://doi.org/10.1145/3372885.3373829

[4] Andrew W Appel. 2015. Verification of a cryptographic primitive:

SHA-256. ACM Transactions on Programming Languages and Systems
(TOPLAS) 37, 2 (2015), 1–31. https://doi.org/10.1145/2737924.2774972

[5] Andrew W Appel. 2022. Verified Functional Algorithms (Software

Foundations, Vol. 3). Electronic textbook (2022).

[6] Emilio Jesús Gallego Arias, Benoît Pin, and Pierre Jouvelot. 2016. jsCoq:

Towards Hybrid Theorem Proving Interfaces. In Proceedings of the 12th
Workshop on User Interfaces for Theorem Provers, UITP 2016, Coimbra,
Portugal, 2nd July 2016 (EPTCS, Vol. 239). 15–27. https://doi.org/10.
4204/EPTCS.239.2

[7] Benl, Berger, Schwichtenberg, Seisenberger, and Zuber. 1998. Proof
Theory at Work: Program Development in the Minlog System. Springer

Netherlands, Dordrecht, 41–71. https://doi.org/10.1007/978-94-017-
0435-9_2

[8] Sandrine Blazy and Xavier Leroy. 2009. Mechanized Semantics for

the Clight Subset of the C Language. J. Autom. Reason. 43, 3 (2009),
263–288. https://doi.org/10.1007/s10817-009-9148-3

[9] Çagdas Bozman, Mohamed Iguernlala, Michael Laporte, FL Fessant,

andAlainMebsout. 2018. Liquidity: Ocaml pour la blockchain. Journées
Francophones des Langages Applicatifs 2018 (2018).

[10] Olivier Savary Bélanger, Matthew Z. Weaver, , and Andrew W. Appel.

2019. Certified Code Generation from CPS to C. Technical Report.

Princeton University.

[11] Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke,

Martin E Hopkins, and Peter W Markstein. 1981. Register allocation

via coloring. Computer languages 6, 1 (1981), 47–57. https://doi.org/
10.1016/0096-0551(81)90048-5

[12] Concordium Development Team. 2021. Concordium whitepaper, ver-

sion 1.8.1. https://go.concordium.com/hubfs/White%20paper%20-
%20RWR/Concordium%20White%20Paper%20v1.8.pdf

[13] Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleave-

land, J. F. Cremer, Robert Harper, Douglas J. Howe, Todd B. Knoblock,

Nax Paul Mendler, Prakash Panangaden, James T. Sasaki, and Scott F.

Smith. 1986. Implementing mathematics with the Nuprl proof develop-
ment system. Prentice Hall. https://nuprl-web.cs.cornell.edu/book/

[14] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris

van Doorn, and Jakob von Raumer. 2015. The Lean Theorem Prover

(System Description). In Automated Deduction - CADE-25 - 25th Inter-
national Conference on Automated Deduction, Berlin, Germany, August
1-7, 2015, Proceedings. 378–388. https://doi.org/10.1007/978-3-319-
21401-6_26

[15] Coq development team. 2023. The Gallina specification lan-

guage. https://coq.inria.fr/doc/V8.18.0/refman/language/gallina-
specification-language.html

[16] Stephen Dolan. 2016. Malfunctional programming. In ML Workshop.
[17] Richard Feldman. 2020. Elm in action. Manning Publications.

[18] Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. 2024. Verified

Extraction from Coq to OCaml. Proceedings of the ACM on Program-
ming Languages 8, PLDI (2024), 52–75. https://doi.org/10.1145/3656379

[19] Stéphane Glondu. 2009. Extraction certifiée dans Coq-en-Coq. In JFLA
2009, Vingtièmes Journées Francophones des Langages Applicatifs, Saint
Quentin sur Isère, France, January 31 - February 3, 2009. Proceedings
(Studia Informatica Universalis, Vol. 7.2), Alan Schmitt (Ed.). 383–410.

[20] Stéphane Glondu. 2012. Vers une certification de l’extraction de Coq.
(Towards certification of the extraction of Coq). Ph. D. Dissertation. Paris
Diderot University, France.

[21] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,

Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and J. F.

Bastien. 2017. Bringing the web up to speed with WebAssembly. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 185–200.

https://doi.org/10.1145/3062341.3062363
[22] Lars Hupel. 2019. Verified Code Generation from Isabelle/HOL. Ph. D.

Dissertation. Technical University of Munich, Germany. https://nbn-
resolving.org/urn:nbn:de:bvb:91-diss-20190711-1473785-1-3

[23] Lars Hupel and Tobias Nipkow. 2018. A Verified Compiler from Is-

abelle/HOL to CakeML. In Programming Languages and Systems - 27th
European Symposium on Programming, ESOP 2018, Held as Part of the

https://doi.org/10.1017/S0956796822000077
https://doi.org/10.1017/S0956796822000077
https://doi.org/10.1145/3372885.3373829
https://doi.org/10.1145/2737924.2774972
https://doi.org/10.4204/EPTCS.239.2
https://doi.org/10.4204/EPTCS.239.2
https://doi.org/10.1007/978-94-017-0435-9_2
https://doi.org/10.1007/978-94-017-0435-9_2
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0096-0551(81)90048-5
https://go.concordium.com/hubfs/White%20paper%20-%20RWR/Concordium%20White%20Paper%20v1.8.pdf
https://go.concordium.com/hubfs/White%20paper%20-%20RWR/Concordium%20White%20Paper%20v1.8.pdf
https://nuprl-web.cs.cornell.edu/book/
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://coq.inria.fr/doc/V8.18.0/refman/language/gallina-specification-language.html
https://coq.inria.fr/doc/V8.18.0/refman/language/gallina-specification-language.html
https://doi.org/10.1145/3656379
https://doi.org/10.1145/3062341.3062363
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20190711-1473785-1-3
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20190711-1473785-1-3

CertiCoq-Wasm: A Verified WebAssembly Backend for CertiCoq CPP ’25, January 20–21, 2025, Denver, CO, USA

European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes
in Computer Science, Vol. 10801), Amal Ahmed (Ed.). Springer, 999–1026.

https://doi.org/10.1007/978-3-319-89884-1_35
[24] Joomy Korkut, Kathrin Stark, and Andrew W. Appel. 2025. A Verified

Foreign Function Interface Between Coq and C. Proc. ACM Program.
Lang. 9, POPL (2025).

[25] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814

[26] Pierre Letouzey. 2002. A New Extraction for Coq.. In TYPES (Lecture
Notes in Computer Science, Vol. 2646). Springer, 200–219. https://doi.
org/10.1007/3-540-39185-1_12

[27] Pierre Letouzey. 2004. Programmation fonctionnelle certifiée :
L’extraction de programmes dans l’assistant Coq. (Certified functional
programming : Program extraction within Coq proof assistant). Ph. D.
Dissertation. University of Paris-Sud, Orsay, France.

[28] Lorenz Leutgeb. 2018. Towards Verified Compilation of CakeML to

WebAssembly. presented at ViennaJS.

[29] Wolfgang Meier, Jean Pichon-Pharabod, and Bas Spitters. 2024.

CertiCoq-Wasm: Verified compilation from Coq to WebAssembly.

presented at CoqPL’24. https://popl24.sigplan.org/details/CoqPL-
2024-papers/3/CertiCoq-Wasm-Verified-compilation-from-Coq-to-
WebAssembly

[30] Mozilla. 2024. Mozilla Developper Network: WebAssembly. https:
//developer.mozilla.org/en-US/docs/WebAssembly

[31] Eric Mullen, Stuart Pernsteiner, James R Wilcox, Zachary Tatlock, and

Dan Grossman. 2018. Œuf: minimizing the Coq extraction TCB. In Pro-
ceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs. 172–185. https://doi.org/10.1145/3167089

[32] Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin,

Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: A compositionally

verified compiler for a higher-order imperative language. In Proceed-
ings of the 20th ACM SIGPLAN International Conference on Functional
Programming. 166–178. https://doi.org/10.1145/2784731.2784764

[33] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. 2002. Is-
abelle/HOL: a proof assistant for higher-order logic. Vol. 2283. Springer
Science & Business Media. https://doi.org/10.1007/3-540-45949-9

[34] Zoe Paraskevopoulou. 2020. Verified Optimizations for Functional
Languages. Ph. D. Dissertation. Princeton University.

[35] Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel. 2021. Com-

positional optimizations for CertiCoq. Proc. ACM Program. Lang. 5,
ICFP (2021), 1–30. https://doi.org/10.1145/3473591

[36] Christine Paulin-Mohring. 1989. Extracting F𝜔 ’s Programs from Proofs

in the Calculus of Constructions. In Conference Record of the Sixteenth
Annual ACM Symposium on Principles of Programming Languages,
Austin, Texas, USA, January 11-13, 1989. ACM Press, 89–104. https:
//doi.org/10.1145/75277.75285

[37] Christine Paulin-Mohring. 1989. Extraction de programmes dans
le Calcul des Constructions. (Program Extraction in the Calculus of
Constructions). Ph. D. Dissertation. Paris Diderot University, France.
https://tel.archives-ouvertes.fr/tel-00431825

[38] Christine Paulin-Mohring and Benjamin Werner. 1993. Synthesis of

ML Programs in the System Coq. J. Symb. Comput. 15, 5/6 (1993),

607–640. https://doi.org/10.1016/S0747-7171(06)80007-6
[39] Andreas Rossberg. 2019. WebAssembly Core Specification W3C Recom-

mendation. Technical Report. W3C. https://www.w3.org/TR/wasm-
core-1/

[40] Andreas Rossberg. 2023. WebAssembly Core Specification. Technical
Report. W3C. https://webassembly.github.io/tail-call/core/

[41] Olivier Savary Bélanger. 2019. Verified Extraction for Coq. Ph. D.

Dissertation. Princeton University.

[42] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yan-

nick Forster, Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and

Théo Winterhalter. 2020. The MetaCoq Project. J. Autom. Reason. 64,
5 (2020), 947–999. https://doi.org/10.1007/s10817-019-09540-0

[43] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau,

and Théo Winterhalter. 2020. Coq Coq correct! verification of type

checking and erasure for Coq, in Coq. Proc. ACM Program. Lang. 4,
POPL (2020), 8:1–8:28. https://doi.org/10.1145/3371076

[44] Gordon Stewart, Lennart Beringer, and Andrew W. Appel. 2012. Ver-

ified heap theorem prover by paramodulation. (2012), 3–14. https:
//doi.org/10.1145/2364527.2364531

[45] Terru Stübinger and Lars Hupel. 2023. Extending Isabelle/HOL’s Code

Generator with support for the Go programming language. CoRR
abs/2310.02704 (2023). https://doi.org/10.48550/ARXIV.2310.02704
arXiv:2310.02704

[46] The Coq Development Team. 2023. The Coq Proof Assistant. https:
//doi.org/10.5281/zenodo.8161141

[47] Jerome Vouillon and contributors. 2010. Wasm_of_ocaml: a fork of

Js_of_ocaml which compiles OCaml bytecode to WebAssembly. https:
//github.com/ocaml-wasm/wasm_of_ocaml

[48] Shengyi Wang, Qinxiang Cao, Anshuman Mohan, and Aquinas Hobor.

2019. Certifying graph-manipulating C programs via localizations

within data structures. Proceedings of the ACM on Programming Lan-
guages 3, OOPSLA (2019), 1–30. https://doi.org/10.1145/3360597

[49] Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and

Philippa Gardner. 2021. Two Mechanisations of WebAssembly 1.0. In

Formal Methods - 24th International Symposium, FM 2021, Virtual Event,
November 20-26, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 13047), Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan

(Eds.). Springer, 61–79. https://doi.org/10.1007/978-3-030-90870-6_4
[50] Ashley Williams and contributors. 2018. Wasm-pack: your favourite

rust to wasm workflow tool. https://github.com/rustwasm/wasm-
pack

[51] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In

Companion to the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011,
Cristina Videira Lopes and Kathleen Fisher (Eds.). ACM, 301–312.

https://doi.org/10.1145/2048147.2048224

Received 2024-09-16; accepted 2024-11-19

https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12
https://popl24.sigplan.org/details/CoqPL-2024-papers/3/CertiCoq-Wasm-Verified-compilation-from-Coq-to-WebAssembly
https://popl24.sigplan.org/details/CoqPL-2024-papers/3/CertiCoq-Wasm-Verified-compilation-from-Coq-to-WebAssembly
https://popl24.sigplan.org/details/CoqPL-2024-papers/3/CertiCoq-Wasm-Verified-compilation-from-Coq-to-WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://doi.org/10.1145/3167089
https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3473591
https://doi.org/10.1145/75277.75285
https://doi.org/10.1145/75277.75285
https://tel.archives-ouvertes.fr/tel-00431825
https://doi.org/10.1016/S0747-7171(06)80007-6
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://webassembly.github.io/tail-call/core/
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1145/3371076
https://doi.org/10.1145/2364527.2364531
https://doi.org/10.1145/2364527.2364531
https://doi.org/10.48550/ARXIV.2310.02704
https://arxiv.org/abs/2310.02704
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
https://github.com/ocaml-wasm/wasm_of_ocaml
https://github.com/ocaml-wasm/wasm_of_ocaml
https://doi.org/10.1145/3360597
https://doi.org/10.1007/978-3-030-90870-6_4
https://github.com/rustwasm/wasm-pack
https://github.com/rustwasm/wasm-pack
https://doi.org/10.1145/2048147.2048224

	Abstract
	1 Introduction
	1.1 CertiCoq
	1.2 WebAssembly

	2 CertiCoq-Wasm
	2.1 Code Generation
	2.2 Correctness
	2.3 Assumptions

	3 Evaluation
	3.1 Benchmarks
	3.2 Other Extraction Mechanisms to Wasm
	3.3 Performance of Different Extraction Mechanisms
	3.4 Optimisations with Binaryen's Wasm-opt
	3.5 Memory Usage
	3.6 Binary Size
	3.7 Performance of Different Wasm Runtimes
	3.8 Trusted Computing Base

	4 Applications
	4.1 JavaScript Application
	4.2 Blockchain Application

	5 Related Work
	6 Proof Effort and Experience
	Acknowledgments
	References

